File size: 14,529 Bytes
a13f30f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
"""
Helion-OSC Training Script
Fine-tuning and training utilities for Helion-OSC model
"""
import os
import torch
import json
import logging
from typing import Optional, Dict, Any, List
from dataclasses import dataclass, field
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling,
EarlyStoppingCallback
)
from datasets import load_dataset, Dataset, DatasetDict
from peft import (
LoraConfig,
get_peft_model,
prepare_model_for_kbit_training,
TaskType
)
import wandb
from torch.utils.data import DataLoader
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""Arguments for model configuration"""
model_name_or_path: str = field(
default="DeepXR/Helion-OSC",
metadata={"help": "Path to pretrained model or model identifier"}
)
use_lora: bool = field(
default=True,
metadata={"help": "Whether to use LoRA for efficient fine-tuning"}
)
lora_r: int = field(
default=16,
metadata={"help": "LoRA attention dimension"}
)
lora_alpha: int = field(
default=32,
metadata={"help": "LoRA alpha parameter"}
)
lora_dropout: float = field(
default=0.05,
metadata={"help": "LoRA dropout probability"}
)
load_in_8bit: bool = field(
default=False,
metadata={"help": "Load model in 8-bit precision"}
)
load_in_4bit: bool = field(
default=False,
metadata={"help": "Load model in 4-bit precision"}
)
@dataclass
class DataArguments:
"""Arguments for data processing"""
dataset_name: Optional[str] = field(
default=None,
metadata={"help": "Name of the dataset to use"}
)
dataset_path: Optional[str] = field(
default=None,
metadata={"help": "Path to local dataset"}
)
train_file: Optional[str] = field(
default=None,
metadata={"help": "Path to training data file"}
)
validation_file: Optional[str] = field(
default=None,
metadata={"help": "Path to validation data file"}
)
max_seq_length: int = field(
default=2048,
metadata={"help": "Maximum sequence length"}
)
preprocessing_num_workers: int = field(
default=4,
metadata={"help": "Number of workers for preprocessing"}
)
class HelionOSCTrainer:
"""Trainer class for Helion-OSC model"""
def __init__(
self,
model_args: ModelArguments,
data_args: DataArguments,
training_args: TrainingArguments
):
self.model_args = model_args
self.data_args = data_args
self.training_args = training_args
# Initialize tokenizer
self.tokenizer = self._load_tokenizer()
# Initialize model
self.model = self._load_model()
# Load and preprocess data
self.datasets = self._load_datasets()
logger.info("Trainer initialized successfully")
def _load_tokenizer(self):
"""Load and configure tokenizer"""
logger.info("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(
self.model_args.model_name_or_path,
trust_remote_code=True,
padding_side="right"
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
return tokenizer
def _load_model(self):
"""Load and configure model"""
logger.info("Loading model...")
model_kwargs = {
"trust_remote_code": True,
"low_cpu_mem_usage": True
}
# Configure quantization
if self.model_args.load_in_8bit:
model_kwargs["load_in_8bit"] = True
elif self.model_args.load_in_4bit:
model_kwargs["load_in_4bit"] = True
model_kwargs["bnb_4bit_compute_dtype"] = torch.bfloat16
model_kwargs["bnb_4bit_use_double_quant"] = True
model_kwargs["bnb_4bit_quant_type"] = "nf4"
else:
model_kwargs["torch_dtype"] = torch.bfloat16
model = AutoModelForCausalLM.from_pretrained(
self.model_args.model_name_or_path,
**model_kwargs
)
# Apply LoRA if requested
if self.model_args.use_lora:
logger.info("Applying LoRA configuration...")
if self.model_args.load_in_8bit or self.model_args.load_in_4bit:
model = prepare_model_for_kbit_training(model)
lora_config = LoraConfig(
r=self.model_args.lora_r,
lora_alpha=self.model_args.lora_alpha,
target_modules=[
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj"
],
lora_dropout=self.model_args.lora_dropout,
bias="none",
task_type=TaskType.CAUSAL_LM
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
return model
def _load_datasets(self) -> DatasetDict:
"""Load and preprocess datasets"""
logger.info("Loading datasets...")
if self.data_args.dataset_name:
# Load from HuggingFace Hub
datasets = load_dataset(self.data_args.dataset_name)
elif self.data_args.train_file:
# Load from local files
data_files = {"train": self.data_args.train_file}
if self.data_args.validation_file:
data_files["validation"] = self.data_args.validation_file
datasets = load_dataset("json", data_files=data_files)
else:
raise ValueError("Must provide either dataset_name or train_file")
# Preprocess datasets
logger.info("Preprocessing datasets...")
datasets = datasets.map(
self._preprocess_function,
batched=True,
num_proc=self.data_args.preprocessing_num_workers,
remove_columns=datasets["train"].column_names,
desc="Preprocessing datasets"
)
return datasets
def _preprocess_function(self, examples):
"""Preprocess examples for training"""
# Tokenize inputs
if "prompt" in examples and "completion" in examples:
# Instruction-following format
texts = [
f"{prompt}\n{completion}"
for prompt, completion in zip(examples["prompt"], examples["completion"])
]
elif "text" in examples:
# Raw text format
texts = examples["text"]
else:
raise ValueError("Dataset must contain 'text' or 'prompt'/'completion' columns")
# Tokenize
tokenized = self.tokenizer(
texts,
truncation=True,
max_length=self.data_args.max_seq_length,
padding="max_length",
return_tensors=None
)
# Create labels (same as input_ids for causal LM)
tokenized["labels"] = tokenized["input_ids"].copy()
return tokenized
def train(self):
"""Train the model"""
logger.info("Starting training...")
# Data collator
data_collator = DataCollatorForLanguageModeling(
tokenizer=self.tokenizer,
mlm=False
)
# Initialize trainer
trainer = Trainer(
model=self.model,
args=self.training_args,
train_dataset=self.datasets["train"],
eval_dataset=self.datasets.get("validation"),
tokenizer=self.tokenizer,
data_collator=data_collator,
callbacks=[EarlyStoppingCallback(early_stopping_patience=3)]
)
# Train
train_result = trainer.train()
# Save model
trainer.save_model()
# Save metrics
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
logger.info("Training completed successfully!")
return trainer, metrics
def evaluate(self, trainer: Optional[Trainer] = None):
"""Evaluate the model"""
if trainer is None:
data_collator = DataCollatorForLanguageModeling(
tokenizer=self.tokenizer,
mlm=False
)
trainer = Trainer(
model=self.model,
args=self.training_args,
eval_dataset=self.datasets.get("validation"),
tokenizer=self.tokenizer,
data_collator=data_collator
)
logger.info("Evaluating model...")
metrics = trainer.evaluate()
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
return metrics
def create_code_dataset(examples: List[Dict[str, str]]) -> Dataset:
"""
Create a dataset from code examples
Args:
examples: List of dictionaries with 'prompt' and 'completion' keys
Returns:
Dataset object
"""
return Dataset.from_dict({
"prompt": [ex["prompt"] for ex in examples],
"completion": [ex["completion"] for ex in examples]
})
def create_math_dataset(examples: List[Dict[str, str]]) -> Dataset:
"""
Create a dataset from math examples
Args:
examples: List of dictionaries with 'problem' and 'solution' keys
Returns:
Dataset object
"""
return Dataset.from_dict({
"prompt": [f"Problem: {ex['problem']}\nSolution:" for ex in examples],
"completion": [ex["solution"] for ex in examples]
})
def main():
"""Main training script"""
import argparse
parser = argparse.ArgumentParser(description="Train Helion-OSC model")
# Model arguments
parser.add_argument("--model_name_or_path", type=str, default="DeepXR/Helion-OSC")
parser.add_argument("--use_lora", action="store_true", default=True)
parser.add_argument("--lora_r", type=int, default=16)
parser.add_argument("--lora_alpha", type=int, default=32)
parser.add_argument("--lora_dropout", type=float, default=0.05)
parser.add_argument("--load_in_8bit", action="store_true")
parser.add_argument("--load_in_4bit", action="store_true")
# Data arguments
parser.add_argument("--dataset_name", type=str, default=None)
parser.add_argument("--dataset_path", type=str, default=None)
parser.add_argument("--train_file", type=str, required=True)
parser.add_argument("--validation_file", type=str, default=None)
parser.add_argument("--max_seq_length", type=int, default=2048)
parser.add_argument("--preprocessing_num_workers", type=int, default=4)
# Training arguments
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument("--num_train_epochs", type=int, default=3)
parser.add_argument("--per_device_train_batch_size", type=int, default=4)
parser.add_argument("--per_device_eval_batch_size", type=int, default=4)
parser.add_argument("--gradient_accumulation_steps", type=int, default=4)
parser.add_argument("--learning_rate", type=float, default=2e-5)
parser.add_argument("--warmup_steps", type=int, default=100)
parser.add_argument("--logging_steps", type=int, default=10)
parser.add_argument("--save_steps", type=int, default=500)
parser.add_argument("--eval_steps", type=int, default=500)
parser.add_argument("--save_total_limit", type=int, default=3)
parser.add_argument("--fp16", action="store_true")
parser.add_argument("--bf16", action="store_true")
parser.add_argument("--gradient_checkpointing", action="store_true")
parser.add_argument("--use_wandb", action="store_true")
args = parser.parse_args()
# Create argument objects
model_args = ModelArguments(
model_name_or_path=args.model_name_or_path,
use_lora=args.use_lora,
lora_r=args.lora_r,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
load_in_8bit=args.load_in_8bit,
load_in_4bit=args.load_in_4bit
)
data_args = DataArguments(
dataset_name=args.dataset_name,
dataset_path=args.dataset_path,
train_file=args.train_file,
validation_file=args.validation_file,
max_seq_length=args.max_seq_length,
preprocessing_num_workers=args.preprocessing_num_workers
)
training_args = TrainingArguments(
output_dir=args.output_dir,
num_train_epochs=args.num_train_epochs,
per_device_train_batch_size=args.per_device_train_batch_size,
per_device_eval_batch_size=args.per_device_eval_batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
learning_rate=args.learning_rate,
warmup_steps=args.warmup_steps,
logging_steps=args.logging_steps,
save_steps=args.save_steps,
eval_steps=args.eval_steps,
save_total_limit=args.save_total_limit,
fp16=args.fp16,
bf16=args.bf16,
gradient_checkpointing=args.gradient_checkpointing,
report_to="wandb" if args.use_wandb else "none",
load_best_model_at_end=True,
metric_for_best_model="eval_loss",
greater_is_better=False,
evaluation_strategy="steps",
save_strategy="steps",
logging_dir=f"{args.output_dir}/logs",
remove_unused_columns=False
)
# Initialize trainer
helion_trainer = HelionOSCTrainer(
model_args=model_args,
data_args=data_args,
training_args=training_args
)
# Train
trainer, metrics = helion_trainer.train()
# Evaluate
if args.validation_file:
eval_metrics = helion_trainer.evaluate(trainer)
logger.info(f"Evaluation metrics: {eval_metrics}")
logger.info("Training pipeline completed!")
if __name__ == "__main__":
main() |