File size: 14,529 Bytes
a13f30f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
"""
Helion-OSC Training Script
Fine-tuning and training utilities for Helion-OSC model
"""

import os
import torch
import json
import logging
from typing import Optional, Dict, Any, List
from dataclasses import dataclass, field
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    TrainingArguments,
    Trainer,
    DataCollatorForLanguageModeling,
    EarlyStoppingCallback
)
from datasets import load_dataset, Dataset, DatasetDict
from peft import (
    LoraConfig,
    get_peft_model,
    prepare_model_for_kbit_training,
    TaskType
)
import wandb
from torch.utils.data import DataLoader

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


@dataclass
class ModelArguments:
    """Arguments for model configuration"""
    model_name_or_path: str = field(
        default="DeepXR/Helion-OSC",
        metadata={"help": "Path to pretrained model or model identifier"}
    )
    use_lora: bool = field(
        default=True,
        metadata={"help": "Whether to use LoRA for efficient fine-tuning"}
    )
    lora_r: int = field(
        default=16,
        metadata={"help": "LoRA attention dimension"}
    )
    lora_alpha: int = field(
        default=32,
        metadata={"help": "LoRA alpha parameter"}
    )
    lora_dropout: float = field(
        default=0.05,
        metadata={"help": "LoRA dropout probability"}
    )
    load_in_8bit: bool = field(
        default=False,
        metadata={"help": "Load model in 8-bit precision"}
    )
    load_in_4bit: bool = field(
        default=False,
        metadata={"help": "Load model in 4-bit precision"}
    )


@dataclass
class DataArguments:
    """Arguments for data processing"""
    dataset_name: Optional[str] = field(
        default=None,
        metadata={"help": "Name of the dataset to use"}
    )
    dataset_path: Optional[str] = field(
        default=None,
        metadata={"help": "Path to local dataset"}
    )
    train_file: Optional[str] = field(
        default=None,
        metadata={"help": "Path to training data file"}
    )
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "Path to validation data file"}
    )
    max_seq_length: int = field(
        default=2048,
        metadata={"help": "Maximum sequence length"}
    )
    preprocessing_num_workers: int = field(
        default=4,
        metadata={"help": "Number of workers for preprocessing"}
    )


class HelionOSCTrainer:
    """Trainer class for Helion-OSC model"""
    
    def __init__(
        self,
        model_args: ModelArguments,
        data_args: DataArguments,
        training_args: TrainingArguments
    ):
        self.model_args = model_args
        self.data_args = data_args
        self.training_args = training_args
        
        # Initialize tokenizer
        self.tokenizer = self._load_tokenizer()
        
        # Initialize model
        self.model = self._load_model()
        
        # Load and preprocess data
        self.datasets = self._load_datasets()
        
        logger.info("Trainer initialized successfully")
    
    def _load_tokenizer(self):
        """Load and configure tokenizer"""
        logger.info("Loading tokenizer...")
        tokenizer = AutoTokenizer.from_pretrained(
            self.model_args.model_name_or_path,
            trust_remote_code=True,
            padding_side="right"
        )
        
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
        
        return tokenizer
    
    def _load_model(self):
        """Load and configure model"""
        logger.info("Loading model...")
        
        model_kwargs = {
            "trust_remote_code": True,
            "low_cpu_mem_usage": True
        }
        
        # Configure quantization
        if self.model_args.load_in_8bit:
            model_kwargs["load_in_8bit"] = True
        elif self.model_args.load_in_4bit:
            model_kwargs["load_in_4bit"] = True
            model_kwargs["bnb_4bit_compute_dtype"] = torch.bfloat16
            model_kwargs["bnb_4bit_use_double_quant"] = True
            model_kwargs["bnb_4bit_quant_type"] = "nf4"
        else:
            model_kwargs["torch_dtype"] = torch.bfloat16
        
        model = AutoModelForCausalLM.from_pretrained(
            self.model_args.model_name_or_path,
            **model_kwargs
        )
        
        # Apply LoRA if requested
        if self.model_args.use_lora:
            logger.info("Applying LoRA configuration...")
            
            if self.model_args.load_in_8bit or self.model_args.load_in_4bit:
                model = prepare_model_for_kbit_training(model)
            
            lora_config = LoraConfig(
                r=self.model_args.lora_r,
                lora_alpha=self.model_args.lora_alpha,
                target_modules=[
                    "q_proj",
                    "k_proj",
                    "v_proj",
                    "o_proj",
                    "gate_proj",
                    "up_proj",
                    "down_proj"
                ],
                lora_dropout=self.model_args.lora_dropout,
                bias="none",
                task_type=TaskType.CAUSAL_LM
            )
            
            model = get_peft_model(model, lora_config)
            model.print_trainable_parameters()
        
        return model
    
    def _load_datasets(self) -> DatasetDict:
        """Load and preprocess datasets"""
        logger.info("Loading datasets...")
        
        if self.data_args.dataset_name:
            # Load from HuggingFace Hub
            datasets = load_dataset(self.data_args.dataset_name)
        elif self.data_args.train_file:
            # Load from local files
            data_files = {"train": self.data_args.train_file}
            if self.data_args.validation_file:
                data_files["validation"] = self.data_args.validation_file
            
            datasets = load_dataset("json", data_files=data_files)
        else:
            raise ValueError("Must provide either dataset_name or train_file")
        
        # Preprocess datasets
        logger.info("Preprocessing datasets...")
        datasets = datasets.map(
            self._preprocess_function,
            batched=True,
            num_proc=self.data_args.preprocessing_num_workers,
            remove_columns=datasets["train"].column_names,
            desc="Preprocessing datasets"
        )
        
        return datasets
    
    def _preprocess_function(self, examples):
        """Preprocess examples for training"""
        # Tokenize inputs
        if "prompt" in examples and "completion" in examples:
            # Instruction-following format
            texts = [
                f"{prompt}\n{completion}"
                for prompt, completion in zip(examples["prompt"], examples["completion"])
            ]
        elif "text" in examples:
            # Raw text format
            texts = examples["text"]
        else:
            raise ValueError("Dataset must contain 'text' or 'prompt'/'completion' columns")
        
        # Tokenize
        tokenized = self.tokenizer(
            texts,
            truncation=True,
            max_length=self.data_args.max_seq_length,
            padding="max_length",
            return_tensors=None
        )
        
        # Create labels (same as input_ids for causal LM)
        tokenized["labels"] = tokenized["input_ids"].copy()
        
        return tokenized
    
    def train(self):
        """Train the model"""
        logger.info("Starting training...")
        
        # Data collator
        data_collator = DataCollatorForLanguageModeling(
            tokenizer=self.tokenizer,
            mlm=False
        )
        
        # Initialize trainer
        trainer = Trainer(
            model=self.model,
            args=self.training_args,
            train_dataset=self.datasets["train"],
            eval_dataset=self.datasets.get("validation"),
            tokenizer=self.tokenizer,
            data_collator=data_collator,
            callbacks=[EarlyStoppingCallback(early_stopping_patience=3)]
        )
        
        # Train
        train_result = trainer.train()
        
        # Save model
        trainer.save_model()
        
        # Save metrics
        metrics = train_result.metrics
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
        
        logger.info("Training completed successfully!")
        
        return trainer, metrics
    
    def evaluate(self, trainer: Optional[Trainer] = None):
        """Evaluate the model"""
        if trainer is None:
            data_collator = DataCollatorForLanguageModeling(
                tokenizer=self.tokenizer,
                mlm=False
            )
            
            trainer = Trainer(
                model=self.model,
                args=self.training_args,
                eval_dataset=self.datasets.get("validation"),
                tokenizer=self.tokenizer,
                data_collator=data_collator
            )
        
        logger.info("Evaluating model...")
        metrics = trainer.evaluate()
        
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
        
        return metrics


def create_code_dataset(examples: List[Dict[str, str]]) -> Dataset:
    """
    Create a dataset from code examples
    
    Args:
        examples: List of dictionaries with 'prompt' and 'completion' keys
        
    Returns:
        Dataset object
    """
    return Dataset.from_dict({
        "prompt": [ex["prompt"] for ex in examples],
        "completion": [ex["completion"] for ex in examples]
    })


def create_math_dataset(examples: List[Dict[str, str]]) -> Dataset:
    """
    Create a dataset from math examples
    
    Args:
        examples: List of dictionaries with 'problem' and 'solution' keys
        
    Returns:
        Dataset object
    """
    return Dataset.from_dict({
        "prompt": [f"Problem: {ex['problem']}\nSolution:" for ex in examples],
        "completion": [ex["solution"] for ex in examples]
    })


def main():
    """Main training script"""
    import argparse
    
    parser = argparse.ArgumentParser(description="Train Helion-OSC model")
    
    # Model arguments
    parser.add_argument("--model_name_or_path", type=str, default="DeepXR/Helion-OSC")
    parser.add_argument("--use_lora", action="store_true", default=True)
    parser.add_argument("--lora_r", type=int, default=16)
    parser.add_argument("--lora_alpha", type=int, default=32)
    parser.add_argument("--lora_dropout", type=float, default=0.05)
    parser.add_argument("--load_in_8bit", action="store_true")
    parser.add_argument("--load_in_4bit", action="store_true")
    
    # Data arguments
    parser.add_argument("--dataset_name", type=str, default=None)
    parser.add_argument("--dataset_path", type=str, default=None)
    parser.add_argument("--train_file", type=str, required=True)
    parser.add_argument("--validation_file", type=str, default=None)
    parser.add_argument("--max_seq_length", type=int, default=2048)
    parser.add_argument("--preprocessing_num_workers", type=int, default=4)
    
    # Training arguments
    parser.add_argument("--output_dir", type=str, required=True)
    parser.add_argument("--num_train_epochs", type=int, default=3)
    parser.add_argument("--per_device_train_batch_size", type=int, default=4)
    parser.add_argument("--per_device_eval_batch_size", type=int, default=4)
    parser.add_argument("--gradient_accumulation_steps", type=int, default=4)
    parser.add_argument("--learning_rate", type=float, default=2e-5)
    parser.add_argument("--warmup_steps", type=int, default=100)
    parser.add_argument("--logging_steps", type=int, default=10)
    parser.add_argument("--save_steps", type=int, default=500)
    parser.add_argument("--eval_steps", type=int, default=500)
    parser.add_argument("--save_total_limit", type=int, default=3)
    parser.add_argument("--fp16", action="store_true")
    parser.add_argument("--bf16", action="store_true")
    parser.add_argument("--gradient_checkpointing", action="store_true")
    parser.add_argument("--use_wandb", action="store_true")
    
    args = parser.parse_args()
    
    # Create argument objects
    model_args = ModelArguments(
        model_name_or_path=args.model_name_or_path,
        use_lora=args.use_lora,
        lora_r=args.lora_r,
        lora_alpha=args.lora_alpha,
        lora_dropout=args.lora_dropout,
        load_in_8bit=args.load_in_8bit,
        load_in_4bit=args.load_in_4bit
    )
    
    data_args = DataArguments(
        dataset_name=args.dataset_name,
        dataset_path=args.dataset_path,
        train_file=args.train_file,
        validation_file=args.validation_file,
        max_seq_length=args.max_seq_length,
        preprocessing_num_workers=args.preprocessing_num_workers
    )
    
    training_args = TrainingArguments(
        output_dir=args.output_dir,
        num_train_epochs=args.num_train_epochs,
        per_device_train_batch_size=args.per_device_train_batch_size,
        per_device_eval_batch_size=args.per_device_eval_batch_size,
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        learning_rate=args.learning_rate,
        warmup_steps=args.warmup_steps,
        logging_steps=args.logging_steps,
        save_steps=args.save_steps,
        eval_steps=args.eval_steps,
        save_total_limit=args.save_total_limit,
        fp16=args.fp16,
        bf16=args.bf16,
        gradient_checkpointing=args.gradient_checkpointing,
        report_to="wandb" if args.use_wandb else "none",
        load_best_model_at_end=True,
        metric_for_best_model="eval_loss",
        greater_is_better=False,
        evaluation_strategy="steps",
        save_strategy="steps",
        logging_dir=f"{args.output_dir}/logs",
        remove_unused_columns=False
    )
    
    # Initialize trainer
    helion_trainer = HelionOSCTrainer(
        model_args=model_args,
        data_args=data_args,
        training_args=training_args
    )
    
    # Train
    trainer, metrics = helion_trainer.train()
    
    # Evaluate
    if args.validation_file:
        eval_metrics = helion_trainer.evaluate(trainer)
        logger.info(f"Evaluation metrics: {eval_metrics}")
    
    logger.info("Training pipeline completed!")


if __name__ == "__main__":
    main()