Update inference.py
Browse files- inference.py +40 -49
inference.py
CHANGED
|
@@ -1,57 +1,48 @@
|
|
|
|
|
| 1 |
import torch
|
| 2 |
-
|
| 3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM,
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
prompt_template = "[INST] {prompt} [/INST]"
|
| 15 |
-
prompt = "This is a reasoning problem. You're standing on the surface of the Earth. " \
|
| 16 |
-
"You walk one mile south, one mile west and one mile north. " \
|
| 17 |
-
"You end up exactly where you started. Where are EXACTLY on earth you?"
|
| 18 |
-
|
| 19 |
-
input_text = prompt
|
| 20 |
-
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
| 21 |
-
attention_mask = torch.ones_like(input_ids).to(device)
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
prompt_template.format(prompt=prompt),
|
| 27 |
return_tensors='pt'
|
| 28 |
).input_ids.cuda()
|
| 29 |
|
| 30 |
-
# Generate
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
pad_token_id=tokenizer.eos_token_id,
|
| 45 |
-
eos_token_id=tokenizer.eos_token_id,
|
| 46 |
-
output_attentions=False,
|
| 47 |
-
output_hidden_states=False,
|
| 48 |
-
return_dict_in_generate=True,
|
| 49 |
-
streamer=streamer,
|
| 50 |
-
)
|
| 51 |
-
|
| 52 |
-
# Decode the generated output
|
| 53 |
-
generated_text = tokenizer.decode(generated_outputs.sequences[0], skip_special_tokens=True)
|
| 54 |
-
|
| 55 |
-
# Print the generated output
|
| 56 |
-
print("Generated output:")
|
| 57 |
-
print(generated_text)
|
|
|
|
| 1 |
+
import gc
|
| 2 |
import torch
|
| 3 |
+
from tqdm import tqdm
|
| 4 |
+
from transformers import AutoTokenizer, TextStreamer, AutoModelForCausalLM, AutoConfig
|
| 5 |
+
|
| 6 |
+
model_path = "Crystalcareai/Quiet-Star-Custom"
|
| 7 |
+
|
| 8 |
+
# Load model
|
| 9 |
+
config = AutoConfig.from_pretrained(model_path, max_position_embeddings=2048, use_cache=False, trust_remote_code=True)
|
| 10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 11 |
+
model_path,
|
| 12 |
+
config=config,
|
| 13 |
+
device_map="auto",
|
| 14 |
+
low_cpu_mem_usage=True,
|
| 15 |
+
torch_dtype=torch.bfloat16,
|
| 16 |
+
trust_remote_code=True,
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 20 |
+
model.tokenizer = tokenizer # Assign the tokenizer to the model instance
|
| 21 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=False)
|
| 22 |
+
|
| 23 |
+
# Convert prompt to tokens
|
| 24 |
prompt_template = "[INST] {prompt} [/INST]"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
prompt = "You're standing on the surface of the Earth. "\
|
| 27 |
+
"You walk one mile south, one mile west and one mile north. "\
|
| 28 |
+
"You end up exactly where you started. Where are you?"
|
| 29 |
|
| 30 |
+
input_ids = tokenizer(
|
| 31 |
prompt_template.format(prompt=prompt),
|
| 32 |
return_tensors='pt'
|
| 33 |
).input_ids.cuda()
|
| 34 |
|
| 35 |
+
# Generate output
|
| 36 |
+
generation_output = model.generate(
|
| 37 |
+
input_ids,
|
| 38 |
+
max_length=1024,
|
| 39 |
+
do_sample=True,
|
| 40 |
+
top_k=50,
|
| 41 |
+
top_p=0.95,
|
| 42 |
+
num_return_sequences=1,
|
| 43 |
+
streamer=streamer,
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# Decode the output
|
| 47 |
+
generated_text = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
|
| 48 |
+
print(generated_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|