Rename train.py to train-h100-sharegpt-sft.py
Browse files
train.py → train-h100-sharegpt-sft.py
RENAMED
|
@@ -44,9 +44,11 @@ def model_init(params):
|
|
| 44 |
model_id = "Crystalcareai/Quiet-Star-Custom"
|
| 45 |
tokenizer_id = model_id
|
| 46 |
print("Loading model")
|
|
|
|
|
|
|
| 47 |
model = AutoModelForCausalLM.from_pretrained(
|
| 48 |
model_id,
|
| 49 |
-
torch_dtype=torch.
|
| 50 |
max_thoughts=n_ahead + n_ahead_talk + 1,
|
| 51 |
merged_talk_heads=merged_talk_heads,
|
| 52 |
merged_lm_and_talk_heads=False,
|
|
@@ -58,14 +60,13 @@ def model_init(params):
|
|
| 58 |
use_complex_talk_head=True,
|
| 59 |
use_weighted_talk_head=True,
|
| 60 |
trust_remote_code=True,
|
| 61 |
-
device_map="auto",
|
| 62 |
# load_in_4bit=True,
|
| 63 |
# attn_implementation="flash_attention_2",
|
| 64 |
)
|
| 65 |
print("Loaded model")
|
| 66 |
|
| 67 |
-
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
| 68 |
-
tokenizer.padding_side = 'left' # Adjust padding side to 'left' to avoid batch generation issues with Flash Attention
|
| 69 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 70 |
|
| 71 |
special_tokens_to_add = []
|
|
@@ -97,42 +98,42 @@ def model_init(params):
|
|
| 97 |
model.train()
|
| 98 |
return model
|
| 99 |
|
| 100 |
-
max_seq_length =
|
| 101 |
run_id = int(time.time())
|
| 102 |
training_args = TrainingArguments(
|
| 103 |
output_dir="./out",
|
| 104 |
num_train_epochs=3,
|
| 105 |
per_device_train_batch_size=1,
|
| 106 |
gradient_checkpointing=False,
|
| 107 |
-
gradient_accumulation_steps=
|
| 108 |
-
optim="
|
| 109 |
logging_steps=1,
|
| 110 |
save_strategy="steps",
|
| 111 |
-
save_steps=
|
| 112 |
bf16=True,
|
|
|
|
| 113 |
tf32=False,
|
| 114 |
# epsilson=1e-05,
|
| 115 |
# beta1=0.9,
|
| 116 |
# beta2=0.95,
|
| 117 |
# auto_find_batch_size=True
|
| 118 |
-
learning_rate=
|
| 119 |
-
max_grad_norm=
|
| 120 |
-
|
| 121 |
lr_scheduler_type="cosine",
|
| 122 |
push_to_hub=False,
|
| 123 |
report_to="wandb"
|
| 124 |
|
| 125 |
)
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
#
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
# )
|
| 136 |
|
| 137 |
torch.autograd.set_detect_anomaly(True)
|
| 138 |
model = model_init(None) # Initialize the model
|
|
@@ -143,7 +144,7 @@ trainer = SFTTrainer(
|
|
| 143 |
args=training_args,
|
| 144 |
train_dataset=dataset,
|
| 145 |
model=model,
|
| 146 |
-
|
| 147 |
tokenizer=tokenizer,
|
| 148 |
max_seq_length=max_seq_length,
|
| 149 |
)
|
|
|
|
| 44 |
model_id = "Crystalcareai/Quiet-Star-Custom"
|
| 45 |
tokenizer_id = model_id
|
| 46 |
print("Loading model")
|
| 47 |
+
|
| 48 |
+
|
| 49 |
model = AutoModelForCausalLM.from_pretrained(
|
| 50 |
model_id,
|
| 51 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 52 |
max_thoughts=n_ahead + n_ahead_talk + 1,
|
| 53 |
merged_talk_heads=merged_talk_heads,
|
| 54 |
merged_lm_and_talk_heads=False,
|
|
|
|
| 60 |
use_complex_talk_head=True,
|
| 61 |
use_weighted_talk_head=True,
|
| 62 |
trust_remote_code=True,
|
| 63 |
+
# device_map="auto",
|
| 64 |
# load_in_4bit=True,
|
| 65 |
# attn_implementation="flash_attention_2",
|
| 66 |
)
|
| 67 |
print("Loaded model")
|
| 68 |
|
| 69 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id,truncation=True,padding_side="right")
|
|
|
|
| 70 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 71 |
|
| 72 |
special_tokens_to_add = []
|
|
|
|
| 98 |
model.train()
|
| 99 |
return model
|
| 100 |
|
| 101 |
+
max_seq_length = 1024
|
| 102 |
run_id = int(time.time())
|
| 103 |
training_args = TrainingArguments(
|
| 104 |
output_dir="./out",
|
| 105 |
num_train_epochs=3,
|
| 106 |
per_device_train_batch_size=1,
|
| 107 |
gradient_checkpointing=False,
|
| 108 |
+
gradient_accumulation_steps=6,
|
| 109 |
+
optim="lion_32bit",
|
| 110 |
logging_steps=1,
|
| 111 |
save_strategy="steps",
|
| 112 |
+
save_steps=25,
|
| 113 |
bf16=True,
|
| 114 |
+
# fp16=True,
|
| 115 |
tf32=False,
|
| 116 |
# epsilson=1e-05,
|
| 117 |
# beta1=0.9,
|
| 118 |
# beta2=0.95,
|
| 119 |
# auto_find_batch_size=True
|
| 120 |
+
learning_rate=6e-05,
|
| 121 |
+
max_grad_norm=0.3, # Gradient clipping with a maximum gradient norm of 0.3
|
| 122 |
+
warmup_ratio=0.06,
|
| 123 |
lr_scheduler_type="cosine",
|
| 124 |
push_to_hub=False,
|
| 125 |
report_to="wandb"
|
| 126 |
|
| 127 |
)
|
| 128 |
|
| 129 |
+
peft_config = LoraConfig(
|
| 130 |
+
r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
| 131 |
+
target_modules = ["q_proj", "k_proj"],
|
| 132 |
+
lora_alpha = 16,
|
| 133 |
+
lora_dropout = 0, # Supports any, but = 0 is optimized
|
| 134 |
+
bias = "none", # Enable Dora method
|
| 135 |
+
use_dora=True,
|
| 136 |
+
)
|
|
|
|
| 137 |
|
| 138 |
torch.autograd.set_detect_anomaly(True)
|
| 139 |
model = model_init(None) # Initialize the model
|
|
|
|
| 144 |
args=training_args,
|
| 145 |
train_dataset=dataset,
|
| 146 |
model=model,
|
| 147 |
+
peft_config=peft_config,
|
| 148 |
tokenizer=tokenizer,
|
| 149 |
max_seq_length=max_seq_length,
|
| 150 |
)
|