LDanielBlueway commited on
Commit
6661511
·
verified ·
1 Parent(s): ccb0a51

Update handler.py

Browse files
Files changed (1) hide show
  1. handler.py +3 -10
handler.py CHANGED
@@ -2,13 +2,12 @@ from typing import Dict, List, Any
2
  from io import BytesIO
3
  import base64
4
  import logging
5
- import uform
6
  from PIL import Image
7
  import numpy as np
8
 
9
  class EndpointHandler():
10
  def __init__(self, path=""):
11
- self.model, self.processor = uform.get_model('unum-cloud/uform-vl-multilingual-v2')
12
 
13
  def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
14
  """
@@ -24,16 +23,10 @@ class EndpointHandler():
24
  image = Image.open(BytesIO(base64.b64decode(inputs_request['image'])))
25
  text = inputs_request['text']
26
 
27
- image_data = self.processor.preprocess_image(image)
28
- text_data = self.processor.preprocess_text(text)
29
-
30
- image_features, image_embedding = self.model.encode_image(image_data)
31
- text_features, text_embedding = self.model.encode_text(text_data)
32
- joint_embedding = self.model.encode_multimodal(image=image_data, text=text_data)
33
-
34
  # Convert embeddings to lists of floats
35
  serializable_results = {
36
- 'joint_embedding': joint_embedding.tolist() if isinstance(joint_embedding, np.ndarray) else joint_embedding,
37
  'text_embedding': text_embedding.tolist() if isinstance(text_embedding, np.ndarray) else text_embedding,
38
  'image_embedding': image_embedding.tolist() if isinstance(image_embedding, np.ndarray) else image_embedding
39
  }
 
2
  from io import BytesIO
3
  import base64
4
  import logging
 
5
  from PIL import Image
6
  import numpy as np
7
 
8
  class EndpointHandler():
9
  def __init__(self, path=""):
10
+ self.model = AutoModel.from_pretrained('jinaai/jina-clip-v1', trust_remote_code=True)
11
 
12
  def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
13
  """
 
23
  image = Image.open(BytesIO(base64.b64decode(inputs_request['image'])))
24
  text = inputs_request['text']
25
 
26
+ text_embeddings = model.encode_text(text)
27
+ image_embeddings = model.encode_image(image)
 
 
 
 
 
28
  # Convert embeddings to lists of floats
29
  serializable_results = {
 
30
  'text_embedding': text_embedding.tolist() if isinstance(text_embedding, np.ndarray) else text_embedding,
31
  'image_embedding': image_embedding.tolist() if isinstance(image_embedding, np.ndarray) else image_embedding
32
  }