--- license: mit library_name: transformers, llama-cpp-python tags: - dual-model - edge-ai - instruction-tuned - robotics - quantized - raspberry-pi - llama - intent-classification - text-generation - on-device language: - en - ta - hi datasets: - Apex-X/PRODIGY-LAB_SARA --- ![PRODIGY-Dual](https://img.shields.io/badge/PRODIGY--DOIECHI--SARA-Dual%20Model%20System-blue) ![Memory-Efficient](https://img.shields.io/badge/Edge--Optimized-Raspberry%20Pi%20Ready-green) ![Multi-Model](https://img.shields.io/badge/Dual--Architecture-Intelligent%20Routing-orange) ![Python](https://img.shields.io/badge/Python-3.8%2B-green) ![License](https://img.shields.io/badge/License-MIT-yellow) ![Multilingual](https://img.shields.io/badge/Multilingual-South%20Indian%20Languages-orange)

PRODIGY 1.2B Banner

# Model Card for PRODIGY-DOIECHI & PRODIGY-SARA A revolutionary **dual-model AI system** optimized for **edge devices** (Raspberry Pi, Jetson Nano, etc.), combining an ultra-lightweight intent classifier (**PRODIGY-DOIECHI**) with a powerful reasoning engine (**PRODIGY-SARA**). The system intelligently routes queries to the optimal model based on complexity, enabling both **sub-100ms responses** and **deep reasoning** on low-resource hardware. - **GitHub**: [https://github.com/Apex-X/PRODIGY-DOIECHI-SARA](https://github.com/Apex-X/PRODIGY-DOIECHI-SARA) - **Author**: Aadhithya (Apex-X) - **Contact**: aadhithyaxll@gmail.com - **License**: MIT --- ## Model Details ### 🚀 PRODIGY-DOIECHI - **Type**: Neural Network Intent Classifier - **Parameters**: 1.2M - **Format**: PyTorch (`.pth`) - **Size**: < 50 MB - **Input**: Natural language query - **Output**: Structured intent + confidence score - **Use Case**: Commands, calculations, system operations, greetings ### 🧠 PRODIGY-SARA - **Base Model**: Llama-7B ,QWEN-238B - **Quantization**: GGUF `Q4_K_M` - **Format**: GGUF (via `llama-cpp-python`) - **Size**: ~3.8 GB - **Context Window**: 1024 tokens - **Fine-tuned on**: [Apex-X/PRODIGY-LAB_SARA](https://huggingface.co/datasets/Apex-X/PRODIGY-LAB_SARA) - **Domains**: Robotics, Tamil Nadu culture, agriculture, medical support, ethics, general reasoning --- ## Intended Use This system is designed for **on-device AI assistants** in: - Smart homes - Educational robots - Industrial IoT monitoring - Rural digital kiosks (supporting Tamil, Hindi, English) **Not intended** for high-stakes medical diagnosis, legal advice, or autonomous weapon systems. --- ## Performance (Raspberry Pi 4) | Metric | DOIECHI | SARA | |----------------------|-------------|--------------| | RAM Usage | 45 MB | 3.8 GB | | Avg. Latency | 85 ms | 2.3 sec | | Throughput | 11.8 q/s | 0.43 q/s | | Intent Accuracy | 89% | — | | Generation Speed | — | 2.3 tok/sec | > Combined system averages **0.8s response time** in real-world mixed workloads. --- ## Smart Routing Logic The system uses a 4-stage pipeline: 1. **Memory** → short-term context (non-persistent) 2. **Function Executor** → direct system commands 3. **DOIECHI** → classify intent & complexity 4. **SARA** → activated only if confidence < 0.85 or query contains reasoning keywords (`explain`, `how`, `why`, etc.) Routing decision takes **< 5ms** and learns from usage patterns. --- ## How to Use ### Python (Combined System) ```python from prodigy_system import ProdigyDualSystem system = ProdigyDualSystem() print(system.process("What's 128 / 4?")) # → DOIECHI print(system.process("Explain photosynthesis.")) # → SARA ``` --- ## 🧠 Hardware Requirements **Minimum** - Raspberry Pi Zero 2 W (64-bit OS) - OS: Linux (64-bit) - Python: 3.8+ - RAM: 2–4 GB - Dependencies: `torch`, `llama-cpp-python`, `nltk`, `psutil` **Recommended** - Raspberry Pi 4 (4GB+ RAM) or NVIDIA Jetson Nano - OS: Ubuntu 20.04+ / Raspberry Pi OS 64-bit - Python: 3.10+ - Dependencies: `torch` (CUDA build), `llama-cpp-python`, `nltk`, `psutil`, `huggingface_hub` **Optional** - Use Hugging Face Spaces or local FastAPI app for deployment - GPU acceleration supported (NVIDIA RTX 20xx or higher) - Convert model to GGUF or quantized formats for faster inference --- ## ⚖️ Ethical Considerations - **No Persistent Data Storage** The system does not store personal data or user history beyond the current session. - **User Privacy First** Every interaction is processed locally or in-memory. No external tracking or telemetry. - **Multilingual Accessibility** Built with South Indian language inclusivity in mind, ensuring wider digital access. - **Bias Awareness** Model responses are generated from training data that may contain inherent biases. Always review critical outputs with human oversight. - **Responsible Usage** This model is for research, educational, and robotics-related applications only. Avoid use in contexts that generate harmful, discriminatory, or deceptive content. --- *Developed as part of the **PRODIGY 1.2B** open research initiative on Hugging Face.* *Optimized for lightweight AI deployment on edge devices like Raspberry Pi and Jetson Nano.* Citation @software{prodigy_dual_2025, author = {Aadhithya Ravi}, title = {PRODIGY-DOIECHI \& PRODIGY-SARA: A Dual-Model Edge AI System}, year = {2025}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/Apex-X/PRODIGY-DOIECHI-SARA}} } --- ## 🏁 Acknowledgements - Built on **llama.cpp** and **PyTorch** - Inspired by **Alpaca**, **Self-Instruct**, and **TinyLLM** research - Special thanks to the **Raspberry Pi** and **open-source AI** communities for enabling lightweight, accessible edge AI innovation © 2025 **Aadhithya (Apex-X)**. Released under the **MIT License**. --- This format follows Hugging Face’s **standard model card structure**, includes all metadata in the YAML frontmatter, and is ready to be used as the `README.md` in a Hugging Face **model repository** (e.g., `Apex-X/PRODIGY-DOIECHI-SARA`). Let me know if you'd like separate cards for each model or a version optimized for the **Hugging Face Spaces** demo!