--- library_name: transformers license: mit base_model: indobenchmark/indobert-large-p2 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: results_indobert-large-p2_preprocessing_tuning results: [] --- # results_indobert-large-p2_preprocessing_tuning This model is a fine-tuned version of [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6673 - Accuracy: 0.7841 - Precision: 0.7920 - Recall: 0.7918 - F1: 0.7901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.3352320097915953e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.2207 | 1.0 | 111 | 0.7383 | 0.7409 | 0.7463 | 0.7491 | 0.7435 | | 0.6702 | 2.0 | 222 | 0.6673 | 0.7841 | 0.7920 | 0.7918 | 0.7901 | | 0.4953 | 3.0 | 333 | 0.7161 | 0.7636 | 0.7707 | 0.7722 | 0.7711 | | 0.3754 | 4.0 | 444 | 0.8318 | 0.75 | 0.7552 | 0.7657 | 0.7569 | | 0.2769 | 5.0 | 555 | 0.8916 | 0.7591 | 0.7587 | 0.7732 | 0.7642 | | 0.2039 | 6.0 | 666 | 0.9693 | 0.7432 | 0.7533 | 0.7589 | 0.7524 | | 0.1525 | 7.0 | 777 | 1.0838 | 0.7477 | 0.7431 | 0.7610 | 0.7471 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.2