results_indobert-large-p2_preprocessing_tuning
This model is a fine-tuned version of indobenchmark/indobert-large-p2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6673
- Accuracy: 0.7841
- Precision: 0.7920
- Recall: 0.7918
- F1: 0.7901
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.3352320097915953e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 1.2207 | 1.0 | 111 | 0.7383 | 0.7409 | 0.7463 | 0.7491 | 0.7435 |
| 0.6702 | 2.0 | 222 | 0.6673 | 0.7841 | 0.7920 | 0.7918 | 0.7901 |
| 0.4953 | 3.0 | 333 | 0.7161 | 0.7636 | 0.7707 | 0.7722 | 0.7711 |
| 0.3754 | 4.0 | 444 | 0.8318 | 0.75 | 0.7552 | 0.7657 | 0.7569 |
| 0.2769 | 5.0 | 555 | 0.8916 | 0.7591 | 0.7587 | 0.7732 | 0.7642 |
| 0.2039 | 6.0 | 666 | 0.9693 | 0.7432 | 0.7533 | 0.7589 | 0.7524 |
| 0.1525 | 7.0 | 777 | 1.0838 | 0.7477 | 0.7431 | 0.7610 | 0.7471 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 11
Model tree for Alfanatasya/results_indobert-large-p2_preprocessing_tuning
Base model
indobenchmark/indobert-large-p2